
Online Malware Detection in Cloud
Auto-scaling Systems Using Shallow

Convolutional Neural Networks

Mahmoud Abdelsalam1,2(B), Ram Krishnan1,3, and Ravi Sandhu1,2

1 Institute for Cyber Security and Center for Security and Privacy Enhanced
Cloud Computing, University of Texas at San Antonio,

San Antonio, TX, USA
{mahmoud.abdelsalam,ram.krishnan,ravi.sandhu}@utsa.edu

2 Department of Computer Science, University of Texas at San Antonio,
San Antonio, TX, USA

3 Department of Electrical and Computer Engineering,
University of Texas at San Antonio, San Antonio, TX, USA

Abstract. This paper introduces a novel online malware detection app-
roach in cloud by leveraging one of its unique characteristics—auto-
scaling. Auto-scaling in cloud allows for maintaining an optimal number
of running VMs based on load, by dynamically adding or terminating
VMs. Our detection system is online because it detects malicious behav-
ior while the system is running. Malware detection is performed by uti-
lizing process-level performance metrics to model a Convolutional Neural
Network (CNN). We initially employ a 2d CNN approach which trains on
individual samples of each of the VMs in an auto-scaling scenario. That
is, there is no correlation between samples from different VMs during
the training phase. We enhance the detection accuracy by considering
the correlations between multiple VMs through a sample pairing app-
roach. Experiments are performed by injecting malware inside one of the
VMs in an auto-scaling scenario. We show that our standard 2d CNN
approach reaches an accuracy of �90%. However, our sample pairing
approach significantly improves the accuracy to �97%.

Keywords: Security · Auto-scaling · Online malware detection ·
Cloud IaaS · Deep learning · Convolutional Neural Networks

1 Introduction

Cloud computing characteristics [15] enable novel attacks and malware [5,9–12,
22]. In particular, cloud has become a major target for malware developers since
a large number of Virtual Machines (VMs) are similarly configured. Automatic
provisioning and auto configuration tools have led to the widespread use of auto-
scaling, where VMs scale-in/out on demand. Applications utilizing auto-scaling
architectures1 is one of the most prevalent in cloud. As a result, a malware
1 Amazon architecture references. https://aws.amazon.com/architecture/.

c© IFIP International Federation for Information Processing 2019
Published by Springer Nature Switzerland AG 2019
S. N. Foley (Ed.): DBSec 2019, LNCS 11559, pp. 381–397, 2019.
https://doi.org/10.1007/978-3-030-22479-0_20

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-22479-0_20&domain=pdf
https://aws.amazon.com/architecture/
https://doi.org/10.1007/978-3-030-22479-0_20

382 M. Abdelsalam et al.

that infects one VM can be easily reused to infect other VMs that are similarly
configured or imaged. To that end, cloud has become a very interesting target
to most attackers.

In malware analysis, files are scanned before execution on the actual system
either through static or dynamic analysis. Once an executable/application is
deemed to be benign, it executes on the system without further monitoring. Such
methods often fall short in the case of cloud malware injection [11], a threat where
an attacker injects a malware to manipulate the victim’s VMs, because the initial
scan is usually bypassed or malware is injected into an already scanned benign
application. Consequentially, the need for online malware detection, where you
continuously monitor the whole system for malware, has become a necessity.

Few works [1,6,17,20,21] exist in the domain of online malware detection in
cloud. Typically, machine learning is used in online malware detection. First, a
set of system features are selected and used to build a model. Then, this model
is used for malware detection. Some works use system calls while others use
performance metrics. Although such works target cloud systems in some sense,
there is no real difference between standard online malware detection methods
and cloud-specific methods except in the features selected for machine learning,
where cloud-specific methods restrict the selection of features to those that can
only be fetched through the hypervisor. One can argue that such works focus on
malware detection in VMs running on a hypervisor.

However, what makes cloud computing powerful is the novel characteris-
tics that they support [15] such as on-demand self-service, resource pooling and
rapid elasticity via auto-scaling. In this paper, we explore malware detection
approaches that can leverage specific cloud characteristics. In particular, we focus
on auto-scaling. The high-level idea is that in an auto-scaling scenario, where
multiple VMs are spawned based on demand, each of those VMs is typically a
replica. This means the “behavior” of those VMs need to closely correspond with
each other. If a malware were to be injected online into one of those VMs, the
infected VM’s behavior will likely deviate at some point in time. Our work seeks
to detect such deviations when they occur. A sophisticated attacker can attempt
to simultaneously inject malware into multiple VMs, which could induce simi-
lar behavior across those VMs, and thereby escape our detection mechanisms.
This is an interesting challenge and we plan this for future work. This paper
focuses on malware detection when exactly one of the VMs in an auto-scaling
environment is compromised.

In terms of the approach, first, we introduce and discuss a cloud-specific
online malware detection approach. It applies 2d CNN, a deep learning approach,
for online malware detection by utilizing system process-level performance met-
rics. A 2d input matrix/image is represented as the unique processes × selected
features. We assume that similarly configured VMs should have similar behav-
ior, so we train a single model for VMs that belongs to the same group such
as the group of application servers in a 3-tier auto-scaling web architecture of
web servers, application servers and database servers. Next, we introduce a new
approach that leverages auto-scaling. Here, we consider correlations between

Online Malware Detection in Cloud Auto-scaling Systems 383

multiple VMs by pairing samples from pairs of those VMs. Samples collected
at the same time from multiple VMs are paired and fed into CNN as a single
sample.

CNN is chosen because of its simplicity and training speed as opposed to
other deep learning approach (e.g. Recurrent Neural Networks). Also, for the
sake of practicality, we show that even a shallow CNN (LeNet-5) trained only
for a few epochs can be effective for online malware detection. In summary the
contributions of this paper are two-fold:

– We introduce a 2d CNN based online malware detection approach for multiple
VMs.

– We improve 2d CNN by introducing a new approach by pairing samples from
different VMs to accommodate for correlations between those VMs.

To the best of our knowledge, our work is the first to leverage cloud-specific
characteristics for online malware detection. The remainder of this paper is orga-
nized as follows. Section 2 discusses related work on cloud-specific online mal-
ware detection. Section 3 explains the key intuition about the idea presented.
Section 4 outlines the methodology including the architecture of the CNN mod-
els. Section 5 describes the experiments conducted and results. Finally, Sect. 6
summarizes and concludes this paper.

2 Related Work

Many research works address the problem of online malware detection using
different set of features and machine learning algorithms. Some works [6,8,14]
focus on using systems calls while others [3,18,19] focus on using API calls.
Others [16,23] focus on using memory features or performance counters [7].

Only a few research works address the problem of cloud malware detection
since many of the standalone malware detection approaches work for detecting
malware in single VMs in the cloud as well. Most, if not all, of the cloud-specific
malware detection techniques falls under the online malware detection cate-
gory (including anomaly detection approaches). Furthermore, they all focus on
extracting features from the hypervisor since it adds another security layer.

Dawson et al. [6] focus on rootkits and intercept system calls through the
hypervisor to be used as features. Their system call analysis is based on a non
linear phase-space algorithm to detect anomalous behavior. Evaluation is based
on the dissimilarity among phase-space graphs over time.

Wang [20] introduced Entropy based Anomaly Testing (EbAT), an online
analysis system of multiple system-level metrics (e.g. CPU utilization and mem-
ory utilization) for anomaly detection. The proposed system used a light-weight
analysis approach and showed a good potential in detection accuracy and mon-
itoring scalability. However, the evaluation used did not show pragmatic and
realistic cloud scenarios.

Azmandian et al. [4] propose an anomaly detection approach where all fea-
tures are extracted directly from the hypervisor. Various performance metrics

384 M. Abdelsalam et al.

are collected per process (e.g., disk i/o, network i/o) and unsupervised machine
learning techniques like K-NN and Local Outlier Factor (LOF) are used.

Classification of VMs is used for anomaly detection. Pannu et al. [17] pro-
pose an adaptive anomaly detection system for cloud. It focused mainly on var-
ious faults within the cloud infrastructure. Although this work is not directly
addressing malware, such technique is valid for malware detection since mal-
ware can cause faults in VMs, thus worth mentioning. It used a realistic testbed
experimentation comprising 362-node cloud in a university campus. The results
showed a good potential with over 87% of anomaly detection sensitivity. One of
the drawbacks of this work lies within using two-class SVM. Therefore, it suffers
from a data imbalance problem (where there is an imbalance of data from var-
ious classes during the training period), which led to several false classification
of new anomalies.

The work by Watson et al. [21] is similar to [17] but directly addressed
detecting malicious behavior in the cloud. It tried to overcome the drawbacks in
[17] by using one class Support Vector Machine (SVM) for detection of malware
in cloud infrastructure. The approach gathers features at the system and network
levels. The system level features are gathered per process which includes memory
usage, memory usage peak, number of threads and number of handles. The
network level features are gathered using the CAIDA’s CoralReef2 tool. The
study shows high accuracy results; however, it uses known-to-be highly active
malware that easily skew the system’s resource utilization (e.g., by forking many
processes).

In our earlier work [1], we showed that malware can be effectively detected
using black-box VM-level performance and resource utilization metrics (such as
CPU and memory utilization). Although, the work showed promising results for
highly active malware (e.g., ransomware), it is not as effective for low-profile
malware that would not impact black-box level resource utilization significantly.
Subsequently, we introduced a CNN based online malware detection method for
low-profile malware [2]. This work utilized resource utilization metrics for various
processes within a VM. The method was able to detect low-profile malware with
accuracy of �90%. Although, this work yielded good results, it targeted a single
VM much like other related works. Unlike our prior work and other related
works, this paper targets malware detection when multiple VMs are running,
while leveraging specific cloud characteristics such as auto-scaling.

3 Key Intuition

In classification-based process-level online malware detection methods, a
machine learning model is trained on benign and malicious samples of processes
where the goal is to classify a new input sample. The data collection phase, usu-
ally, works by running a VM for some time (benign phase) and then injecting a
malware (malicious phase) while logging the required data. This is referred to as
a single run. The data set includes multiple runs with same/different malware
2 CoralReef Suite: https://www.caida.org/tools/measurement/coralreef/.

https://www.caida.org/tools/measurement/coralreef/

Online Malware Detection in Cloud Auto-scaling Systems 385

CNN Optimizer

….

Trained
CNN Model

Prediction

Testing samples C

Train samples

Fig. 1. Single VMs Single Samples (SVSS)

Fig. 2. Number of used voluntary context switches over 30 min for two different runs
of the same unique process.

which is later divided into training and test data sets. In other words, given
sample X at time t (Xt), the task is to compare Xt to previously seen samples
of the training data set. For a single run, we deal with individual samples of a
single VM. Thus, we refer to this approach as Single VMs Single Samples (SVSS)
which is shown in Fig. 1.

386 M. Abdelsalam et al.

Fig. 3. Number of used voluntary context switches over 30 min for one run of 10 VMs
in an auto-scaling scenario.

SVSS can work in an auto-scaling scenario where we have a trained model
for each auto-scaling tier; however, input samples will lose some information.
Note that multiple runs of a single VM is not the same as multiple VMs running
at the same time. The reason depends mostly on the architecture in place. If a
VM has some effects over another VM, then input samples from single VM in
multiple runs will lose this information. To that end, we extend SVSS and build
an auto-scaling testbed where we can learn from multiple VMs running at the
same time. We refer to it as Multiple VMs Single Sample (MVSS).

The MVSS approach, however, has a disadvantage in the context of process-
level performance metrics. Processes have a very dynamic nature, meaning spikes
are always happening. These spikes are mostly due to sudden events or traffic
surges. For example, Fig. 2 shows two different runs of the same process for the
number of voluntary context switches. No malware is running inside either of
the two VMs. During the training phase, two patterns will be learned, a smooth
recurring up and down pattern and a pattern where there can be some spikes.
During the testing phase, if either pattern is seen, it will be regarded as benign.

On the other hand, Fig. 3 shows one run of the same unique process in 10
VMs (belongs to the same group of VMs in an auto-scaling scenario). VMs are
running at the same time in an auto-scaling scenario. The red colored process
belongs to a VM where a malware was injected. There are two major spikes
in the figure. The first spike happened in the same unique process of all the
VMs. If one of the processes did not have that spike and it was classified as
benign, it might be a misclassification since such spike should happen to all
VMs at the same time. The second spike (caused by the malware injected) is
only observed in the infected VM which should be classified as malicious. In

Online Malware Detection in Cloud Auto-scaling Systems 387

simple words, observing a noticeable enough spike by a particular process should
be classified as malicious (i.e., second spike). However, sudden behavior changes
can happen (i.e., first spike) and flagging an observed spike always as malicious
can cause many misclassifications. As such, considering multiple VMs, spikes
that are observed in a particular process in all VMs at the same time shouldn’t
be classified as malicious since it can be caused by any sudden change in behavior
(e.g. sudden increase in the number requests to web server). MVSS and SVSS
will lose such correlations between VMs since they learn from individual samples
regardless the scenario.

Consequentially, we introduce a new approach where the correlation of mul-
tiple VMs is utilized by pairing samples (at the same time). In other words,
given sample X of VM vmi at time t (Xvmit

), the idea is to compare Xvmit
to

previously seen paired samples of multiple VMs. We refer to this approach as
Multiple VMs Paired Samples (MVPS).

Table 1. Process-level performance metrics

Metric
category

Description

CPU
information

CPU usage percent, CPU times in user space & kernel space, CPU times of
children processes in user space & system space

Context
switches

Number of context switches voluntary & involuntary

IO counters Number of read requests, write requests, read bytes, written bytes, read chars,
written chars

Memory
information

Amount of memory swapped out to disk, Proportional set size, Resident set
size, Unique set size, Virtual memory size, Number of dirty pages, Amount of
physical memory, text resident set, Memory used by shared libraries

Network
information

Number of received bytes, Number of sent bytes

Others Process status, Number of used threads, Number of opened file descriptors

4 Methodology

Detailed explanation of CNN is left out of this paper. However, it will suffice to
say that CNN is a deep learning approach used extensively in image recognition.
Hence, it takes 2d images as input. In our work, the first dimension represents
the processes in the system and the second dimension represents the features
collected for each process. Consider a sample X at a particular time t, that
records n features (performance metrics) per process for m processes in VM vm,
such that:

Xvmt
=

⎡
⎢⎢⎢⎢⎢⎣

f1 f2 . . . fn

p1
...

... . . .
...

...
...

...
. . .

...

pm
...

... . . .
...

⎤
⎥⎥⎥⎥⎥⎦

388 M. Abdelsalam et al.

(a) Total number of processes (b) Number of unique processes

(c) Total number of processes (d) Number of unique processes

Fig. 4. Total number of standard processes versus the number of unique processes in
VMs in an auto-scaling scenario. (Color figure online)

Table 1 shows the process-level performance features which can be fetched
through the hypervisor. CNN requires a specific process to remain in the same
row (in the input matrix) for all inputs in a single run. This means that process
ID (PID) can not simply be used directly. Processes get killed and get created
frequently so a PID identifying one process might identify a different process
later on. For that reason, we define a unique process which is identified by three
elements: process name (name), command line used to execute the process (cmd)
and hash of binary executable (if applicable). In addition, unique processes help
in smoothing the number of processes in a highly active server since most mal-
ware creates new non-unique processes. Figure 4 (a)–(b) and (c)–(d) show two
different experiments (each with a different malware) where the number of total
standard processes are compared to the number of unique processes. Red por-
tions are the start of malware execution. As shown in the figure, the total number
of processes in such a highly active VM does not help much in revealing the mal-
ware behavior as opposed to the number of unique processes. Throughout this
paper the terms process and unique process are used interchangeably where both
refer to unique process.

Online Malware Detection in Cloud Auto-scaling Systems 389

CNN Optimizer

….

Trained
CNN Model

Prediction

….

….

.

.

.

.

.

.

.

.

.

Train
samples

Test
samples

Fig. 5. Multiple VMs Single Sample (MVSS)

4.1 Malware Detection in Multiple VMs Using Single Samples
(MVSS)

This is a relatively straight-forward task. We target multiple VMs in an auto-
scaling scenario. Figure 5 shows the approach used in MVSS. In MVSS we have
samples Xvmitk

from multiple VMs running at the same time, where X is a
sample of VM vmi at time tk. Samples from many runs are collected and are fed
to the CNN optimizer where the learning process takes place. Then the trained
CNN model is used for predictions.

CNN Optimizer

….

Trained
CNN Model

Prediction

….

….

.

.

.

.

.

.

.

.

.

Train
samples

Test
samples

.

.

.

.

.

….

Samples Pairing

Fig. 6. Multiple VMs Paired Samples (MVPS) (Color figure online)

390 M. Abdelsalam et al.

4.2 Malware Detection in Multiple VMs Using Paired Samples
(MVPS)

The MVPS approach is inspired by the duplicate questions problem in online
Q&A forums like Stack Overflow and Quora. The problem focuses on determin-
ing semantic equivalence between questions pairs. It is a binary classification
problem where two questions Q1 and Q2 are given and the task is to determine
whether they are duplicates.

Based on the aforementioned assumption that VMs that belong to the same
group should behave similarly, we use the same analogy to tackle our problem.
To that end, we change the formalization of our problem by using the above
duplicate questions problem concept except, in our case, we are given two sam-
ples Xvmitk

and Xvmjtk
from different VMs, where Xvmitk

is a 2d matrix (image
in CNN terminology) that belongs to vmi at time tk and Xvmjtk

is a 2d matrix
that belongs to vmj at the same time tk. Figure 6 shows the pairing samples app-
roach. Our goal is to find whether Xvmitk

and Xvmjtk
are duplicates (similar).

This is done by pairing the two samples as an input to CNN. Two samples are
considered similar if they are benign, whereas two samples are considered not
similar if either one of them is malicious (red bordered samples are malicious).

By pairing samples, we are actually taking into account the correlations
between samples of different VMs. This is due to the fact that CNN works
by finding spatial correlation within images. MVPS works in an auto-scaling
scenario where there are at least two VMs of the same group. Note that it is
important that we only pair samples of the same time as pairing samples of dif-
ferent times might have completely different values if the behavior of the VMs
has changed over time. For example, a web server handling one request per sec at
time t1 will have a completely different behavior than a web server handling 100
requests per sec at time t2. Consequentially, pairing two samples taken at two
different times might mislead the classifier if the behavior of the VMs changed
over time.

Pairing all samples is a very time consuming operation. In addition, that will
introduce a class imbalance problem since we are only infecting a single VM.
Although, we believe that infecting multiple VMs is hard to occur at the exact
same time in practice, not the least because a malware needs time to infect
other similarly configured VMs. Like mentioned earlier we set this for future
work. Consequentially, as shown in Fig. 6, we pair a malicious sample with all
benign samples from other machines at a particular time. On the other hand,
we pair each benign sample sequentially with the sample of the following VM.

5 Experiment Setup and Results

5.1 CNN Model Architecture

A deep CNN model would require considerably larger processing power. In real-
ity, this might not be affordable. For the sake of practicality, we chose to work

Online Malware Detection in Cloud Auto-scaling Systems 391

Input layer

Convolution Layer 1 + ReLU

Max Pooling Layer 1

Convolution Layer 2 + ReLU

Max Pooling Layer 2

Fully Connected Layer 1 + ReLU

Fully Connected Layer 2 + ReLU

Standardized Input Matrix

Output Prediction

Fully Connected Layer 3

Fig. 7. CNN Model (LeNet-5)

with a shallow CNN. We show that even a shallow CNN can achieve near opti-
mal results in our pairing approach. Figure 7 shows the CNN model used in this
work. We chose LeNet-5 [13] CNN model. Although, it is currently by no means
one of the state-of-the-art CNN models, its shallowness makes it one of the best
candidates in practice. Note that in the context of online malware detection, the
model might need to be trained multiple times based on the deployed workloads
in place. For example, a 3-tier web architecture and a Hadoop architecture might
need different trained models.

The CNN model receives a standardized 2d matrix. Lenet-5 CNN consists of
7 layers (excluding the input layer). The input layer is a 2d matrix of 120 × 45
(120 × 90 for MVPS), representing a sample of maximum 120 processes and 45
features. For empty processes (i.e., processes that do not run at the start time
but might start in the future), rows are padded with zeros. The first layer is a
convolutional layer with 32 kernels of size 5 × 5 with zero padding ending. This
results in a 32 feature maps of size 120×45. The second layer is a max pool layer
of size 2 × 2 which downsizes each dimension by a magnitude of 2, resulting in
a 32 feature maps of size 60 × 23 (60 × 45 for MVPS). The third layer, another
convolutional layer with 64 kernels of size 60 × 23, is followed by a max pool
layer which results in 64 down sized feature maps of size 30 × 12 (30 × 23 for
MVPS). Fifth and sixth layers are fully connected layers of size 1024 and 512,

392 M. Abdelsalam et al.

respectively. Last layer is another fully connected layer of size 2, representing
prediction class (malicious or benign).

ReLU activation is used after every convolutional and fully connected layer
(excluding the last fully connected layer). Adam Optimizer, a stochastic gradient
descent with automatic learning rate adaptation, is used to train the model.
Adam optimizer learning rate is a maximum change threshold to control how
fast the learning process can be (set to 1e−5). The optimizer works by minimizing
the loss function (mean cross entropy). Random grid search is used to tune the
CNN parameters (e.g., mini batch size).

LoadBalancer(Octavia)

Application server
(Wordpress)

Application server
(Wordpress)

DB server
(MySQL)

Client Client

Web server
(Apache)

Web server
(Apache)

LoadBalancer(Octavia)

….

….

….

Fig. 8. 3-tier Web Application

0 30 60

Time
(min)

Clean phase Malware injection Point.
113 Malware executables are
injected (one per experiment).

Period of malware
activity

Collect 28 different process performance metrics
every 10 seconds for 100 processes

Fig. 9. Data collection overview

Online Malware Detection in Cloud Auto-scaling Systems 393

5.2 Experimental Setup

Our experiments were conducted on an Openstack testbed. Figure 8 shows the
3-tier web architecture built on top of our testbed, with auto-scaling enabled
on the web and application server layers. The scalability policy is based on
the average CPU utilization of the total VMs of each tier (scalability group). It
scales-out if the average CPU utilization is above 70% and scales-in if the average
CPU utilization is less than 30%. The number of servers spawned in each tier
were between 2 and 10 based on the traffic load. Traffic was generated based on
ON/OFF Pareto distribution with parameters set according to the NS23 tool
defaults.

The data collection process is shown in Fig. 9. Each of our experiments was
1 h long. The first 30 min is the clean phase. The second 30 min is malicious phase
where a malware is injected. A set of 113 malware were used for each of the dif-
ferent experiments. Malware binaries were randomly obtained from VirusTotal4.
All firewalls were disabled and an internet connection was provided to avoid any
hindrance to the malware’s malicious intentions. Samples were collected at 10 s
intervals, so during a single experiment 360 samples were collected for one VM.

5.3 Evaluation

We use four evaluation metrics.

Precision =
TP

TP + FP

Recall =
TP

TP + FN

Accuracy =
TP + TN

TP + TN + FP + FN

Fscore = 2 × Precision × Recall

Precision + Recall

Precision is the number of correct malware predictions. Recall is the num-
ber of correct malware predictions over the number of true malicious samples.
Accuracy is the measure of correct classification. F score is the harmonic mean of
precision and recall. True Positive (TP) refers to malicious activity that occurred
and was correctly predicted. False Positive (FP) refers to malicious activity that
did not occur but was wrongly predicted. True Negative (TN) refers to malicious
activity that did not occur and was correctly predicted. False Negative (FN)
refers to malicious activity that occurred but was wrongly predicted.

3 NS2 manual. http://www.isi.edu/nsnam/ns/doc/node509.html.
4 VirusTotal website. https://www.virustotal.com.

http://www.isi.edu/nsnam/ns/doc/node509.html
https://www.virustotal.com

394 M. Abdelsalam et al.

Fig. 10. Optimized MVSS CNN classifier results

5.4 MVSS and MVPS Results

Like most standard machine learning classification problems, data was split into
three sets: training (60%), validation (20%) and testing (20%) sets. We split on
the 113 experiments to 67, 23 and 23 respectively. This ensures that validation
and testing phases are exposed to unseen malware. After training the model on
the training set, validation set is used to tune the model parameters as well as
choosing the highest accuracy model. The model is evaluated on the validation
set after each epoch and the highest accuracy model is chosen. Then the testing
set is used to test the chosen model (optimized classifier).

Figure 10 shows the results of MVSS optimized classifier. The optimized clas-
sifier yields accuracy of �90% while precision, recall and fscore are �85% on the
test data set. This approach achieved good results compared to the similar sim-
ple 2d CNN approach in [2]. There are two reasons for this improvement. First,
increasing the number of data (113 malware experiments as opposed to 25). Sec-
ond, using data from multiple VMs as opposed to a single VM; however, we still
had to filter part of the data to balance our data sets (i.e., balance the ratio of
benign to malicious samples).

Figure 11 shows the results of MVPS optimized classifier. There is a signifi-
cant increase in the four evaluation metrics when compared to the MVSS clas-
sifier. The optimized chosen MVPS classifier had a highest accuracy of �98.2%
during the validation phase. It yielded a �96.9% accuracy on the test data set.
Fscore, recall and precision all jumped to �91% on the test data set. The main
reason for this high improvement is that the MVPS approach finds correlations
between the multiple VMs running at the same time which is very beneficial in
an auto-scaling scenario.

Online Malware Detection in Cloud Auto-scaling Systems 395

In both cases, mini-batch size of size 64 and learning rate of 1e − 5 yielded
the best results. The CNN model was trained only for 20 epochs. Note that we
do not use a dropout layer (to avoid over-fitting) since it is not useful when using
a shallow CNN trained for only a few epochs.

Fig. 11. Optimized MVPS CNN classifier results

6 Conclusion and Future Work

In this paper, we introduced an online malware detection approach to leverage
the behavior correlation between multiple VMs in an auto-scaling scenario. The
approaches introduced used 2d CNN for malware detection. First, we introduced
the MVSS method which targets multiple VMs using single individual samples.
MVSS achieved good results with an accuracy of �90%. Then, we introduced
MVPS which targets multiple VMs using paired samples. MVPS takes the previ-
ous approach a step forward by pairing samples from multiple VMs which helps
in finding correlations between the VMs. MVPS showed a considerable improve-
ment over MVSS with an accuracy of �96.9%. In the future, we plan to use
different use case scenarios such as Hadoop and Containers as well as perform
an analysis using different CNN models architecture. We also plan to perform
an analysis to evaluate the effectiveness of ordering the processes and features in
the input matrix. Finally, we plan to develop techniques to handle the situation
when multiple VMs are infected simultaneously by an attacker. One direction,
instead of using pairs of samples, is to use tuples of samples (3-tuple, 4-tuple or
more).

396 M. Abdelsalam et al.

Acknowledgment. This work is partially supported by NSF CREST Grant HRD-
1736209, DoD ARL Grant W911NF-15-1-0518, and NSF CAREER Grant CNS-
1553696.

References

1. Abdelsalam, M., Krishnan, R., Sandhu, R.: Clustering-based IaaS cloud monitor-
ing. In: 10th IEEE CLOUD. IEEE (2017)

2. Abdelsalam, M., Krishnan, R., Sandhu, R.: Malware detection in cloud infrastruc-
tures using convolutional neural networks. In: 11th IEEE CLOUD. IEEE (2018)

3. Alazab, M., Venkatraman, S., Watters, P., Alazab, M.: Zero-day malware detection
based on supervised learning algorithms of API call signatures. In: Proceedings of
the Ninth Australasian Data Mining Conference, vol. 121, pp. 171–182. Australian
Computer Society, Inc. (2011)

4. Azmandian, F., Moffie, M., Alshawabkeh, M., Dy, J., Aslam, J., Kaeli, D.: Virtual
machine monitor-based lightweight intrusion detection. ACM SIGOPS Oper. Syst.
Rev. 45, 38–53 (2011)

5. Dahbur, K., Mohammad, B., Tarakji, A.B.: A survey of risks, threats and vulner-
abilities in cloud computing. In: ISWSA (2011)

6. Dawson, J.A., McDonald, J.T., Hively, L., Andel, T.R., Yampolskiy, M., Hubbard,
C.: Phase space detection of virtual machine cyber events through hypervisor-level
system call analysis. In: 2018 1st International Conference on Data Intelligence
and Security (ICDIS), pp. 159–167. IEEE (2018)

7. Demme, J., et al.: On the feasibility of online malware detection with performance
counters. In: ACM SIGARCH Computer Architecture News, vol. 41. ACM (2013)

8. Dini, G., Martinelli, F., Saracino, A., Sgandurra, D.: MADAM: a multi-level
anomaly detector for Android malware. In: Kotenko, I., Skormin, V. (eds.) MMM-
ACNS 2012. LNCS, vol. 7531, pp. 240–253. Springer, Heidelberg (2012). https://
doi.org/10.1007/978-3-642-33704-8 21

9. Gholami, A., Laure, E.: Security and privacy of sensitive data in cloud computing:
a survey of recent developments. arXiv preprint arXiv:1601.01498 (2016)

10. Grobauer, B., Walloschek, T., Stocker, E.: Understanding cloud computing vulner-
abilities. IEEE Secur. Privacy 9, 50–57 (2011)

11. Gruschka, N., Jensen, M.: Attack surfaces: a taxonomy for attacks on cloud ser-
vices. In: IEEE CLOUD, pp. 276–279 (2010)

12. Jensen, M., Schwenk, J., Gruschka, N., Iacono, L.L.: On technical security issues
in cloud computing. In: IEEE CLOUD (2009)

13. LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to
document recognition. Proc. IEEE 86(11), 2278–2324 (1998)

14. Luckett, P., McDonald, J.T., Dawson, J.: Neural network analysis of system call
timing for rootkit detection. In: 2016 Cybersecurity Symposium (CYBERSEC),
pp. 1–6. IEEE (2016)

15. Mell, P., Grance, T., et al.: The NIST definition of cloud computing (2011)
16. Ozsoy, M., Donovick, C., Gorelik, I., Abu-Ghazaleh, N., Ponomarev, D.: Malware-

aware processors: a framework for efficient online malware detection. In: 2015
IEEE 21st International Symposium on High Performance Computer Architecture
(HPCA), pp. 651–661. IEEE (2015)

17. Pannu, H.S., Liu, J., Fu, S.: Aad: adaptive anomaly detection system for cloud
computing infrastructures. In: 2012 IEEE 31st Symposium on Reliable Distributed
Systems (SRDS), pp. 396–397. IEEE (2012)

https://doi.org/10.1007/978-3-642-33704-8_21
https://doi.org/10.1007/978-3-642-33704-8_21
http://arxiv.org/abs/1601.01498

Online Malware Detection in Cloud Auto-scaling Systems 397

18. Pirscoveanu, R.S., Hansen, S.S., Larsen, T.M., Stevanovic, M., Pedersen, J.M.,
Czech, A.: Analysis of malware behavior: type classification using machine learning.
In: 2015 International Conference on Cyber Situational Awareness, Data Analytics
and Assessment (CyberSA), pp. 1–7. IEEE (2015)

19. Tobiyama, S., Yamaguchi, Y., Shimada, H., Ikuse, T., Yagi, T.: Malware detection
with deep neural network using process behavior. In: COMPSAC, vol. 2. IEEE
(2016)

20. Wang, C.: EbAT: online methods for detecting utility cloud anomalies. In: Pro-
ceedings of the 6th Middleware Doctoral Symposium. ACM (2009)

21. Watson, M.R., et al.: Malware detection in cloud computing infrastructures. IEEE
TDSC 13, 192–205 (2016)

22. Xiao, Z., Xiao, Y.: Security and privacy in cloud computing. IEEE Commun. Surv.
Tutorials 15, 843–859 (2013)

23. Xu, Z., Ray, S., Subramanyan, P., Malik, S.: Malware detection using machine
learning based analysis of virtual memory access patterns. In: 2017 Design,
Automation & Test in Europe Conference & Exhibition (DATE). IEEE (2017)

	Online Malware Detection in Cloud Auto-scaling Systems Using Shallow Convolutional Neural Networks
	1 Introduction
	2 Related Work
	3 Key Intuition
	4 Methodology
	4.1 Malware Detection in Multiple VMs Using Single Samples (MVSS)
	4.2 Malware Detection in Multiple VMs Using Paired Samples (MVPS)

	5 Experiment Setup and Results
	5.1 CNN Model Architecture
	5.2 Experimental Setup
	5.3 Evaluation
	5.4 MVSS and MVPS Results

	6 Conclusion and Future Work
	References

